rojekt Elektronik

Mess- und Regelungstechnik GmbH

Magnetfeld eines Einzelleiters

Application Note PE018

Formel
TUILIEL
Beispiel
Graphische Darstellung4

Feldgeometrie

Bei einem geraden, unendlich langen, stromdurchflossenen Leiter liegen die Feldlinien kreisförmig um den Leitermittelpunkt. Das bedeutet, dass die magnetische Feldstärke auf einem Kreis um den Leiter konstant ist.

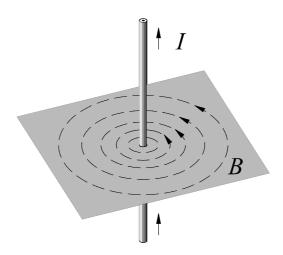


Abbildung 1: Feld eines Leiters

Die Feldrichtung ergibt sich entsprechend der "Rechtehandregel". Siehe dazu auch unsere Application Note PE004 "Grundlagen Magnetfelder".

Projekt Elektronik

Mess- und Regelungstechnik GmbH

Magnetfeld eines Einzelleiters

Formel

Für das magnetische Feld <u>außerhalb</u> eines geraden, unendlich langen, stromdurchflossenen Leiters gilt die folgende Formel:

(1)
$$H(r) = \frac{I}{2\pi r}$$

Dabei bezeichnet r den Abstand vom Leiter<u>mittelpunkt</u> und I den Strom im Leiter.

Mit der Materialgleichung der Elektrodynamik erfolgt die Umrechnung auf die magnetische Flussdichte:

(2)
$$B = \mu H$$

Für Luft mit einem μ_r von 1 vereinfacht sich μ

$$\mu = \mu_r \mu_0$$

(4)
$$\mu = \mu_0$$

Damit ergibt sich

(5)
$$B(r) = \mu_0 \frac{I}{2\pi r}$$

Setzt man den folgenden Wert von μ_0

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{T \cdot m}{A}$$

in Formel (5) ein, so ergibt sich

$$B(r) = 4\pi \cdot 10^{-7} \, \frac{T \cdot m}{A} \frac{I}{2\pi r} \label{eq:Bressel}$$

(8)
$$B(r) = 2 \cdot 10^{-7} \, \text{T} \cdot \frac{1}{A} \cdot \frac{1}{r/m}$$

rojekt Elektronik

Mess- und Regelungstechnik GmbH

Magnetfeld eines Einzelleiters

Beispiel

Gegeben sei ein Leiter in dem 100 A fließen. Wie hoch ist die magnetische Flussdichte in einer Entfernung von 1 cm vom Leitermittelpunkt?

Hierzu werden Formel (8) verwendet. Setzt man die gegeben Werte ein, so erhält man:

(9)
$$B(0,01 \text{ m}) = 2 \cdot 10^{-7} \text{ T} \cdot {}^{100} \text{ A} / \text{A} \cdot \frac{1}{0,01 \text{ m}} / \text{m}$$

Somit ergibt sich:

(10)
$$B(0,01 \text{ m}) = 2 \cdot 10^{-7} \text{ T} \cdot 100 \cdot 100$$

(11)
$$B(0,01 \text{ m}) = 2 \cdot 10^{-3} \text{ T}$$

(12)
$$B(0,01 \text{ m}) = 2 \text{ mT}$$

Nimmt man außerdem eine Stromdichte von

$$(13) J = 2 \frac{A}{mm^2}$$

an, so ergibt sich für den Leiter eine Fläche von

(14)
$$A = \frac{I}{J}$$

(15)
$$A = \frac{100A}{2\frac{A}{mm^2}}$$

(16)
$$A = 50 \, \text{mm}^2$$

Mit der Fläche eines kreisförmigen Querschnittes

(17)
$$A = \pi r^2$$

ergibt sich damit

(18)
$$r = \sqrt{\frac{A}{\pi}}$$

$$(19) r = \sqrt{\frac{50 \text{ mm}^2}{\pi}}$$

$$(20)$$
 $r \approx 4 \text{ mm}$

Die Flussdichte wurde für einen Abstand vom 10 mm vom Leitermittelpunkt berechnet. Von der Leiteroberfläche sind das dann nur noch 6 mm.

rojekt Elektronik

Mess- und Regelungstechnik GmbH

Magnetfeld eines Einzelleiters

Graphische Darstellung

In der nachfolgenden Grafik ist die Flussdichte in Abhängigkeit des Abstandes für verschiedene Ströme aufgetragen.

Außerdem ist die Leiteroberfläche für verschiedene Stromdichten markiert.

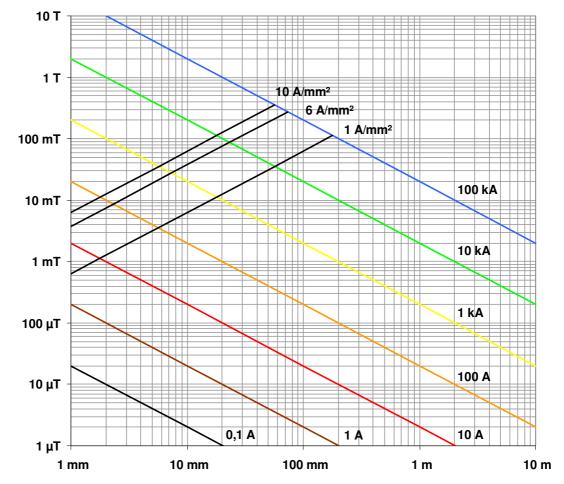


Abbildung 2: Flussdichte in Abhängigkeit von Strom und Entfernung